Hidrocarburos Saturados
Los hidrocarburos son compuestos formados exclusivamente por átomos de carbono e hidrógeno. Los hidrocarburos saturados tienen siempre simples enlaces
ALCANOS
Alcanos acíclicos lineales
Son hidrocarburos saturados de cadena abierta. Se nombran con un prefijo que indica el número de átomos de carbono y el sufijo –ano. Serepresentan dibujando la cadena hidrocarbonada en la que cada átomo de carbono se une al siguiente con enlaces sencillos y se completa con los átomos de hidrógeno correspondientes a la tetravalencia propia del átomo de carbono.
Ejemplos:
n
|
Nombre
|
Fórmula molecular
|
Fórmula semidesarrollada
|
4
|
Butano
|
C4H10
|
CH3CH2CH2CH3
|
5
|
Pentano
|
C5H12
|
CH3CH2CH2CH2CH3
|
6
|
Hexano
|
C6H14
|
CH3CH2CH2CH2CH2CH3
|
1.2 Alcanos acíclicos ramificados
Son iguales que los anteriores pero con sustituyentes que constituyen las ramificaciones. El nombre del hidrocarburo se forma con losnombres de los sustituyentes por orden alfabético, añadiendo al final, sin separación, el nombre de la cadena principal. Varias cadenas laterales idénticas se nombran con prefijos di-, tri-, tetra-, etc.
Para ello se siguen las reglas de la IUPAC:
a) Localizar la cadena principal: la que tenga mayor longitud. A igual longitud, la que tenga mayor número de sustituyentes.
b) Numerar la cadena principal. Utilizar la numeración que asigne los números (o localizadores) más bajos a los carbonos que tienen sustituyentes. A iguales combinaciones, se escoge la menor numeración por orden alfabético de sustituyentes.
c) Nombrar las cadenas laterales como grupos alquilo precedidos por su localizador separado por un guión.
La representación de estos compuestos a partir de su nombre sistemático se hace dibujando la cadena principal, numerándola e identificando los sustituyentes con sus respectivos localizadores.
Ejemplos:
Nombre
|
Fórmula
|
2,2-Dimetilhexano
|
CH3C(CH3) 2CH2CH2CH2CH3
|
3-Etil-2-metilhexano
|
CH3CH(CH3)CH(CH2CH3)CH2CH2CH3
|
Los enlaces sencillos pueden rotar libremente, siendo posibles distintas disposiciones geométricas, llamadas confórmeros, tal como se ilustra en la siguiente figura para el butano.
![]() |
Sin embargo, la energía de rotación entorno a un enlace simple es tan pequeña ( 12 kJ mol–1) que a temperatura ambiente la agitación térmica de las partículas es suficiente para provocar la rotación. Una muestra de butano es una sustancia única que contiene moléculas de C4H10 que están en continuo intercambio entre sus diferentes formas, que reciben el nombre de confórmeros o conformaciones. Los confórmeros del butano más estables son aquellos que más alejan los grupos sustituyentes entre sí, y con preferencia los más voluminosos (los metilos).
1.3 Alcanos cíclicos
Son hidrocarburos saturados de cadena cerrada. Se nombran igual que los de cadena abierta pero anteponiendo el prefijo ciclo. Se representan de la misma manera que los de cadena abierta y se pueden omitir los símbolos de C e H que se suponen localizados en los vértices de la figura que representa su fórmula.
Ejemplos:
Nombre
|
Fórmula
|
Ciclopentano
| |
Metilciclohexano
| ![]() |
| Propiedades físicas. |
Punto de ebullición. Los puntos de ebullición de los alcanos no ramificados aumentan al aumentar el número de átomos de Carbono. Para los isómeros, el que tenga la cadena más ramificada, tendrá un punto de ebullición menor.
Solubilidad. Los alcanos son casi totalmente insolubles en agua debido a su baja polaridad y a su incapacidad para formar enlaces con el hidrógeno. Los alcanos líquidos son miscibles entre sí y generalmente se disuelven en disolventes de baja polaridad. Los buenos disolventes para los alcanos son el benceno, tetracloruro de carbono, cloroformo y otros alcanos.
| Síntesis. |
El principal método para la obtención de alcanos es la hidrogenación de alquenos.

El catalizador puede ser Pt, Pd, Ni .
| Reacciones. |
Las reacciones más importantes de los alcanos son la pirólisis, la combustión y la halogenación.
- Pirólisis. Se produce cuando se calientan alcanos a altas temperaturas en ausencia de Oxígeno. Se rompen enlaces C-C y C-H, formando radicales, que se combinan entre sí formando otros alcanos de mayor número de C.

- Combustión.

- Halogenación.


El Br es muy selectivo y con las condiciones adecuadas, prácticamente, se obtiene un sólo producto, que será aquel que resulte de la adición del Br al C más sustituido.
El Flúor es muy poco selectivo y puede reaccionar violentamente, incluso explosionar, por lo que apenas se utiliza para la halogenación de alcanos.
La halogenación de alcanos mediante el Yodo no se lleva a cabo.
ALCANOS
Los alcanos son compuestos formados exclusivamente por carbono e hidrógeno (hidrocarburos), que solo contienen enlaces simples carbono-carbono.
Tipos de alcanos
Los alcanos se clasifican en lineales, ramificados, cíclicos y policíclicos.
Nomenclatura de alcanos
Los alcanos se nombran terminando en -ano el prefijo que indica el número de carbonos de la molécula (metano, etano, propano...)
Propiedades físicas de los alcanos
Los puntos de fusión y ebullición de alcanos son bajos y aumentan a medida que crece el número de carbonos debido a interacciones entre moléculas por fuerzas de London. Los alcanos lineales tienen puntos de ebullición más elevados que sus isómeros ramificados.
Isómeros conformacionales
Los alcanos no son rígidos debido al giro alrededor del enlace C-C. Se llaman conformaciones a las múltiples formas creadas por estas rotaciones.
La energía de las diferentes conformaciones puede verse en las proyecciones de Newman. Así en el caso del etano la conformación eclipsada es la de mayor energía, debido a las repulsiones entre hidrógenos.
Diagramas de energía potencial
Las diferentes conformaciones de los alcanos se puede representar en un diagrama de energía potencial donde podemos ver que conformación es más estable (mínima energía) y la energía necesaria para pasar de unas conformaciones a otras.
Combustión de alcanos
Dada su escasa reactividad los alcanos también se denominan parafinas. Las reacciones más importantes de este grupo de compuestos son las halogenaciones radicalarias y la combustión. La combustión es la combinación del hidrocarburo con oxígeno, para formar ALQUENOS:
Los alquenos se diferencian con los alcanos en que presentan una doble ligadura a lo largo de la molécula. Esta condición los coloca dentro de los llamados hidrocarburos insaturados junto con los alquinos. Con respecto a su nomenclatura es como la de los alcanos salvo la terminación. En lugar de ano como los alcanos es eno. Al tener una doble ligadura hay dos átomos menos de hidrógeno como veremos en las siguientes estructuras. Por lo tanto, la fórmula general es CnH2n.
Explicaremos a continuación como se forma la doble ligadura entre carbonos.
Anteriormente explicamos la hibridación SP3. Esta vez se produce la hibridación Sp2. El orbital 2s se combina con 2 orbitales p, formando en total 3 orbitales híbridos llamados Sp2. El restante orbital p queda sin combinar. Los 3 orbitales Sp2 se ubican en el mismo plano con un ángulo de 120° dedistancia entre ellos.
El orbital p que no participo en la hibridación ocupa un lugar perpendicular al plano que sostiene a los tres orbitales Sp2.
El enlace doble se forma de la siguiente manera:
Uno de los orbitales sp2 de un C se enlaza con otro orbital sp2 del otro C formando un enlace llamado sigma. El otro enlace está constituido por la superposición de los enlaces p que no participaron en la hibridación. Esta unión se denomina Pi (∏).
Así tenemos por ejemplo Eteno, Propeno, Buteno, etc.
Al nombrar Alquenos y Alquinos a la doble o triple ligadura se le adjudica un número que corresponde a la ubicación de dicha ligadura.
Eteno:
CH2 = CH2
Propeno:
CH2 = CH2 –CH3
Buteno – 1
CH2 = CH — CH2 — CH3
Buteno – 2
CH3 – CH = CH — CH3
Pentino – 2
CH3 — C ≡ C — CH2 —-CH3
Propiedades Físicas:
Son similares a los alcanos. Los tres primeros miembros son gases, del carbono 4 al carbono 18 líquidos y los demás son sólidos.
Son solubles en solventes orgánicos como el alcohol y el éter. Son levemente más densos que los alcanos correspondientes de igual número de carbonos. Los puntos de fusión y ebullición son más bajos que los alcanos correspondientes. Es interesante mencionar que la distancia entre los átomos de carbonos vecinos en la doble ligadura es más pequeña que entre carbonos vecinos en alcanos. Aquí es de unos 1.34 amstrong y en los alcanos es de 1.50 amstrong.
Propiedades Químicas:
Los alquenos son mucho más reactivos que los Alcanos. Esto se debe a la presencia de la dobleligadura que permite las reacciones de adición. Las reacciones de adición son las que se presentan cuando se rompe la doble ligadura, este evento permite que se adicionen átomos de otras sustancias.
Adición de Hidrógeno:→
En presencia de catalizadores metálicos como níquel, los alquenos reaccionan con el hidrógeno, y originan alcanos.
CH2 = CH2 + H2 ——> CH3 – CH3 + 31,6 Kcal
Adición de Halógenos
CH2 = CH2 + Br2 ——-> CH2Br – CH2Br
Dibromo 1-2 Etano
Adición de Hidrácidos:
CH2 = CH2 + HBr ——-> CH3 — CH2 Br
Monobromo Etano
Cuando estamos en presencia de un alqueno de más de 3 átomos de carbono se aplica la regla de Markownicov para predecir cuál de los dos isómeros tendrá presencia mayoritaria.
H2C = CH — CH3 + H Cl → H3C — CHBr — CH3 monobromo 2 – propano
→ H3C — CH2 — CH2Br monobromo 1 – propano
Al adicionarse el hidrácido sobre el alqueno, se formara casi totalmente el isómero que resulta de unirse el halógeno al carbono más deficiente en hidrógeno. En este caso se formara más cantidad de monobromo 2 – propano.
Combustión:
Los alquenos también presentan la reacción de combustión, oxidándose con suficiente oxigeno.
C2H4 + 3 O2 —-> 2 CO2 + 2 H2O
Etano
Diolefinas:
Algunos Alquenos poseen en su estructura dos enlaces dobles en lugar de uno. Estos compuestos reciben el nombre de Diolefinas o Dienos. Se nombran como los Alcanos, pero cambiando le terminación ano por dieno.
H2C = C = CH2
Propadieno – 1,3
H2C = CH — CH = CH2
Butdieno – 1,3
ALQUINOS:
Estos presentan una triple ligadura entre dos carbonos vecinos. Con respecto a la nomenclatura la terminación ano o eno se cambia por ino. Aquí hay dos hidrógenos menos que en los alquenos. Su fórmula general es CnH2n-2. La distancia entre carbonos vecinos con triple ligadura es de unos 1.20 amstrong.
Para la formación de un enlace triple, debemos considerar el otro tipo de hibridación que sufre el átomo de C. La hibridación “sp”.
En esta hibridación, el orbital 2s se hibridiza con un orbital p para formar dos nuevos orbitales híbridos llamados “sp”. Por otra parte quedaran 2 orbitales p sin cambios por cada átomo de C.
El triple enlace que se genera en los alquinos está conformado por dos tipos de uniones. Por un lado dos orbitales sp solapados constituyendo una unión sigma. Y las otras dos se forman por la superposición de los dos orbitales p de cada C. (Dos uniones ∏).
Ejemplos:
Propino
CH ≡ C — CH3
Propiedades físicas:
Los dos primeros son gaseosos, del tercero al decimocuarto son líquidos y son sólidos desde el 15 en adelante.
Su punto de ebullición también aumenta con la cantidad de carbonos.
Los alquinos son solubles en solventes orgánicos como el éter y alcohol. Son insolubles en agua, salvo el etino que presenta un poco de solubilidad.
Propiedades Químicas:
Combustión:
2 HC ≡ CH + 5 O2 ——> 4 CO2 + 2 H2O + 332,9 Kcal
Adición de Halógenos:
HC ≡ CH —- CH3 + CL2 —> HCCl = CCl — CH3
Propino ,2 – dicloro propeno
Adición de Hidrógeno: Se usan catalizadores metálicos como el Platino para favorecer la reacción.
HC ≡ C —- CH3 + H2 ——> H2C = CH — CH3
Propino Propeno
Se puede continuar con la hidrogenación hasta convertirlo en alcano si se lo desea.
Adición de Hidrácidos:
HC ≡ CH —- CH3 + HBr —-> H2C = C Br —- CH3
Propino – 1 Bromo – 2 – Propeno
Como se observa se sigue la regla de Markownicov. Ya que el halógeno se une al carbono con menos hidrógenos. En este caso al del medio que no tiene ninguno.
Ahora vamos a explicar como se denominan a los hidrocarburos con ramificaciones.
Aquí podemos ver que tenemos dos ramificaciones. Los grupos que forman esa ramificación son considerados radicales. Radical en química es un átomo o grupo de átomos que posee una valencia libre. Esta condición los hace susceptibles a unirse a cadenas carbonadas en este caso.
Obtenemos un radical cuando al metano (CH4) le quitamos un átomo de hidrógeno en su molécula quedándole al carbono una valencia libre.
CH3
Este radical se llama metil o metilo. Su nombre deriva del metano. Se les agrega el sufijo il.
Si lo obtuviéramos a partir del Etano se llamaría etil y a partir del propano, propil y así sucesivamente.
Etil y Propil:
H3C — CH2 –
H3C — CH — CH2 –
A veces se presentan otros radicales cuando el hidrógeno faltante es de un carbono secundario, es decir, que está unido a otros dos carbonos. Si al propano le quitamos un H del C del medio tenemos al radical isopropil:
H3C — CH — CH3
Otros radicales que podemos citar son el isobutil y el ter-butil derivado del butano.
Isopropil e Isobutil
Ter-butil
Volviendo al primer ejemplo de hidrocarburo ramificado.
Vemos claramente una cadena horizontal integrada por 4 átomos de C, y un grupo metilo en la parte superior. Este metil es la ramificación. Se nombra primero a este metil con un número que indica la posición de este en la cadena más larga. El numero uno se le asigna al carbono que está más cerca de la ramificación. Luego nombramos a la cadena.
El nombre es 2 metil-Butano.
Otros ejemplos:
Los alquenos son hidrocarburos que contienen enlaces dobles carbono-carbono. Se emplea frecuentemente la palabra olefina como sinónimo.
Los alquenos abundan en la naturaleza. El eteno, es un compuesto que controla el crecimiento de las plantas, la germinación de las semillas y la maduración de los frutos.
Los alquenos abundan en la naturaleza. El eteno, es un compuesto que controla el crecimiento de las plantas, la germinación de las semillas y la maduración de los frutos.
Nomenclatura de Alquenos
Los alquenos se nombran reemplazando la terminación -ano del correspondiente alcano por -eno. Los alquenos más simples son el eteno y el propeno, también llamados etileno y propileno a nivel industrial.
LEER MÁS...
Regla 1.- Se elige como cadena principal la de mayor longitud que contenga el doble enlace. La numeración comienza en el extremo que otorga al doble enlace el menor localizador.

Grado de insaturación
Cada anillo o ciclo de una molécula implica la pérdida de dos hidrógenos respecto a un alcano de fórmula CnH2n+2. Se denomina grado de insaturación al número de ciclos y dobles enlaces presentes en una molécula..Alquenos - Estructura y Enlace
Los siguientes modelos muestran la estructura, distancias y ángulos de enlace del eteno. Cada uno de los carbonos de la molécula tiene hibridación sp2. Su geometría es plana, con ángulos de enlace próximos a los 120º.
LEER MÁS...
Propiedades físicas de Alquenos
Los alquenos presentan puntos de fusión y ebullición próximos a los alcanos correspondientes.
LEER MÁS...
Estabilidad de los Alquenos
Los calores desprendidos en las siguientes reacciones de hidrogenación, nos dan una idea sobre la diferente estabilidad de los alquenos.
LEER MÁS...
Síntesis de Alquenos mediante
Los alquenos pueden prepararse a partir de haloalcanos y sulfonatos de alquilo mediante eliminación bimolecular (E2). En el siguiente ejemplo el 2-bromo-2-metilbutano reacciona con metóxido de sodio para formar una mezcla de 2-metil-2-buteno y 2-metil-1-buteno.
LEER MÁS...
Síntesis de Alquenos por Deshidratación de Alcoholes
El tratamiento de alcoholes con ácidos minerales a elevadas temperaturas provoca la pérdida e agua, que transcurre a través de mecanismos E1 o E2.

Alquino
Los alquinos son hidrocarburos alifáticos con al menos un triple enlace -C≡C- entre dos átomos de carbono. Se trata de compuestos metaestables debido a la alta energía del triple enlace carbono-carbono. Su fórmula general es CnH2n-2.Para que den nombre a los hidrocarburos del tipo alquino se siguen ciertas reglas similares a las de los alquenos.
- Se toma como cadena principal la cadena continua más larga que contenga el o los triples enlaces.
- La cadena se numera de forma que los átomos del carbono del triple enlace tengan los números más bajos posibles.
- Dicha cadena principal a uno de los átomos de carbono del enlace triple. Dicho número se sitúa antes de la terminación -ino. Ej.: CH3-CH2-CH2-CH2-C≡C-CH3, hept-2-ino.
- Si hay varios triples enlaces, se indica con los prefijos di, tri, tetra... Ej.: octa-1,3,5,7-tetraino, CH≡C-C≡C-C≡C-C≡CH.
- Si existen dobles y triples enlaces, se da el número más bajo al doble enlace. Ej.: pent-2-en-4-ino, CH3-CH=CH-C≡CH
- Los sustituyentes tales como átomos de halógeno o grupos alquilo se indican mediante su nombre y un número, de la misma forma que para el caso de los alcanos. Ej.: 3-cloropropino, CH≡C-CH2Cl; 2,5-dimetilhex-3-ino, CH3-C(CH3)-C≡C-C(CH3)-CH3.
NOMENCLATURA DE ALQUINOS
CHCH etino(acetileno) CH3–C
CH propino CH3–CH2–C
CH 1-butino CH3-C
C-CH3 2-butino CH
C- etinilo CH
C-CH2– 2-propinilo CH3–C
C- 1-propinilo CH3–CH2–CH2–C
CH 1-pentino
Propiedades físicas[
Son insolubles en agua, pero bastante solubles en disolventes orgánicos usuales y de baja polaridad: ligroína, éter,benceno, tetracloruro de carbono. Son menos densos que el agua y sus puntos de ebullición muestran el aumento usual con el incremento del número de carbonos y el efecto habitual de ramificación de las cadenas. Los puntos de ebullición son casi los mismos que para los alcanos o alquenos con el mismo esqueleto carbonado.
Los tres primeros términos son gases; los demás son líquidos o sólidos. A medida que aumenta el peso molecular aumentan la densidad, el punto de fusión y el punto de ebullición.
Los acetilenos son compuestos de baja polaridad, por lo cual sus propiedades físicas son muy semejantes a la de los alquenos y alcanos.
hay que tener en cuenta que los acetilenos completen la regla del cuarteto.
Propiedades químicas
Las reacciones más frecuentes son las de adición: de hidrógeno, halógeno, agua, etc. En estas reacciones se rompe el triple enlace y se forman enlaces de menor polaridad: dobles o sencillos.
Hidrogenación de alquinos
Los alquinos pueden ser hidrogenados para dar los correspondientescis-alquenos (doble enlace) tratándolos con hidrógeno en presencia de un catalizador de paladio sobre sulfato de bario o sobre carbonato de calcio (catalizador Lindlar) parcialmente envenenado con óxido de plomo. Si se utiliza paladio sobre carbón activo el producto obtenido suele ser el alcano correspondiente (enlace sencillo).
- CH≡CH + H2 → CH2=CH2 + H2 → CH3-CH3
Aunque la densidad de electrones y con esto de carga negativa en el triple enlace es elevada pueden ser atacados pornucleófilos. La razón se encuentra en la relativa estabilidad del anión de vinilo formado.
- CH3-C≡C-CH3 + 2 Na + 2 NH3 → CH3-CH=CH-CH3 (trans) + 2 NaNHH2
Halogenación, hidrohalogenación e hidratación de alquinos[editar]
Así como les ocurre a los alquenos, los alquinos participan en otras reacciones de adición:
Halogenación[
Dependiendo de las condiciones y de la cantidad añadida de halógeno (flúor, F2; cloro, Cl2; bromo, Br2...), se puede obtener derivados halogenados del alqueno o del alcano correspondiente.
- HC≡CH + Br2 → HCBr=CHBr
- HC≡CH + 2 Br2 → HCBr2-CHBr2
Hidrohalogenación, hidratación, etc.
El triple enlace también puede adicionar halogenuros de hidrógeno, agua, alcohol, etc., con formación de enlaces dobles o sencillos. En general se sigue la regla de Markovnikov.
- HC≡CH + H-X → CH2=CHX donde X = F, Cl, Br...
- HC≡CH + H2O → CHOH=CH2
Acidez del hidrógeno terminal
En algunas reacciones (frente a bases fuertes, como amiduro de sodio Na-NH2 en amoniaco NH3) actúan como ácidos débiles pues el hidrógeno terminal presenta cierta acidez. Se forman acetiluros (base conjugada del alquino)que son buenos nucleófilos y dan mecanismos de sustitución nucleófila con los reactivos adecuados.2 Esto permite obtener otros alquinos de cadena más larga.
- HC≡CH + Na-NH2 → HC≡C:- Na+
- HC≡C:- Na+ + Br-CH3 → HC≡C-CH3 + NaBr
Reacciones pericíclicas
Aplicaciones
La mayor parte de los alquinos se fábrica en forma de acetileno. A su vez, una buena parte del acetileno se utiliza como combustible en la soldadura a gas debido a las elevadas temperaturas alcanzadas.
En la industria química los alquinos son importantes productos de partida por ejemplo en la síntesis del PVC (adición de HCl) de caucho artificial etc.
El grupo alquino está presente en algunos fármacos citostáticos.
Los polímeros generados a partir de los alquinos, los polialquinos, son semiconductores orgánicos y pueden ser dotados parecido al silicio aunque se trata de materiales flexibles y largos.
Analítica
Los alquinos decolorean una solución ácida de permanganato de potasio y el agua de bromo. Si se trata de alquinos terminales (con el triple enlace a uno de los carbonos finales de la molécula) forman sales con soluciones amoniacales deplata o de cobre. (Estas sales son explosivas) La mayor parte de los alquinos se fabrica en forma de acetileno. A su vez, una buena parte del acetileno se utiliza como combustible en la soldadura a gas debido a las elevadas temperaturas alcanzadas.
Estructura electrónica[
El triple enlace entre los carbonos es formado por dos orbitales sp y dos orbitales p. Los enlaces hacia el resto de la molécula se realizan a través de los orbitales sp restantes. La distancia entre los dos átomos de carbono es típicamente de 120 pm. La geometría de los carbonos del triple enlace y sus sustituyentes es lineal.
Véase también[
- Academia Minas.










CH etino(acetileno) CH3–C

No hay comentarios:
Publicar un comentario